
Assessment policies

Mark Armstrong

August 11, 2021

Contents
1 Automated unit testing policy 1

2 Assignment literate documentation 2
2.1 Assignment literate documentation policy 2
2.2 Assignment literate documentation style guide 3

2.2.1 General literate documentation style rules 3
2.2.2 Format specific literate documentation style rules . . . 4

2.3 Assignment literate documentation content guide 4

1 Automated unit testing policy
Automated unit tests will be provided for all assignments, and whenever
possible and practical, they will also be provided for each homework.

You should not submit the testing files with your assignment
contents; it will not cause any problems, but testing files will be ignored
and overwritten before testing.

Alongside the files for unit testing, a Docker image will also be provided,
in order to ensure that you are able to run the tests in the exact same
environment that the course staff will use.

Passing the provided tests is mandatory, but does not guarantee a pass-
ing grade (both for homeworks and assignments.)

• Assignments will undergo a code review by the course staff, and your
grade will be influenced just as much or more by your code’s approach
and style as by passing of tests.

• Homeworks will undergo a similar, but much more cursory, code re-
view. Barring any obvious issues, you should receive a passing grade
if your code passes the tests.

1

https://docker.com

Submissions which do not pass all or a majority of the tests may not be
considered for grading at all, at the discretion of the course staff.

During marking, we will typically add some additional tests, often con-
structed to test what we consider to be more “extreme” cases than are
covered by the the provided tests, possibly including interesting edge cases.

• You are encouraged to try and think of these cases yourselves, and add
appropriate tests to the provided ones in order to better check your
solutions.

• You are not expected to submit any updates or additions to the testing
files; as mentioned, any submissions of testing files will be ignored and
overwritten.

2 Assignment literate documentation

2.1 Assignment literate documentation policy

In addition to source code files, assignments will also require you submit
documentation for your code in the form of a literate programming docu-
ment.

20% of each assignment’s marks are set aside for this documentation.

• 12% for the contents of the documentation, and

• 8% for the style of the documentation.

• Even if the assignment is incomplete, full documentation marks may
be awarded,

– so long as some parts are sufficiently completed,
– and some discussion of the difficulties with missing parts is in-

cluded.
∗ (More than just “I ran out of time”.)

Any of the following formats are acceptable for this documentation:

• Markdown (homepage)

• Org mode (homepage)

– Implementations outside of Emacs exist, but typically have some-
what minimal features.

2

https://en.wikipedia.org/wiki/Edge_case
http://www.literateprogramming.com/index.html
https://daringfireball.net/projects/markdown/
https://orgmode.org/

• ReStructured text (homepage)

• HTML

– Using <code> tags,
– and preferably a tool to provide syntax highlighting, such as

∗ highlight.js or
∗ Prism

• PDF

– In particular, through LATEX (homepage)
∗ Using a package such as listings (documentation) or minted,

which provides syntax highlighting (GitHub homepage and
documentation)

• Possibly more; speak to us if there is a format you feel should be
accepted.

– Microsoft Word, OpenOffice and other WSIWYG (What You See
Is What You Get) editor formats will not be accepted.

∗ If you wish to use such an editor, you may export your file
to a PDF for submission. Do be sure to follow the style
guidelines below.

2.2 Assignment literate documentation style guide

As mentioned in the assignment literate documentation policy, 8% of the
marks of each assignment is allocated for the style of the documentation.

The section general literate documenation style rules below outlines what
is required in your documentation, and what is optional.

Then the section format specific literate documentation style rules are
some comments about style requirements or recommendations for specific
formats.

2.2.1 General literate documentation style rules

Required:

• In non-plaintext formats (such as HTML and PDF), code blocks must
be displayed using fixed width (monospace) fonts. (What’s a fixed
width font?)

3

https://docutils.sourceforge.io/rst.html
https://highlightjs.org/usage/
https://prismjs.com/#basic-usage
https://www.latex-project.org/
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://github.com/gpoore/minted
https://github.com/gpoore/minted
https://en.wikipedia.org/wiki/Monospaced_font
https://en.wikipedia.org/wiki/Monospaced_font

– In non-plaintext formats (such as HTML and PDF), non-code-
block portions should be displayed using non-fixed width fonts.

– There must be a font distinction between

• Headings (and often subheadings) must be used for organisation.

– Typically, it is sufficient to use the same document structure as
in the assignment description.

• Code blocks must not be too long; there should be documentation
interspersed with code regularly.

– There is not a hard and fast rule here; instead follow these guide-
lines:

∗ Where they are more than a few lines, each function, proce-
dure, type declaration, etc., should be in its own code block.

∗ In no instance should a code block span an entire page or
more.

2.2.2 Format specific literate documentation style rules

:TODO:

2.3 Assignment literate documentation content guide

:TODO:

4

	Automated unit testing policy
	Assignment literate documentation
	Assignment literate documentation policy
	Assignment literate documentation style guide
	General literate documentation style rules
	Format specific literate documentation style rules

	Assignment literate documentation content guide

