
Creating pretty cross-format inference rules in Org
mode

Mark Armstrong

Tuesday, March 17th, 2020

Contents
1 Introduction 2

1

https://armkeh.github.io

2 Approach 1 Plaintext 3
2.1 Conclusion . 4

3 Approach 2 Tables 4
3.1 Approach 2.1 Starting out Basic tables 4

3.1.1 Conclusion . 5
3.2 Approach 2.2 Enabling names Manual horizontal rule 6
3.3 Approach 2.3 One step forward, two steps back A macro for

premises . 7
3.3.1 A bit of elisp . 7
3.3.2 Using the elisp: inline calls 8
3.3.3 Hiding the inline calls: introducing the premise2 macro 9
3.3.4 Where it falls apart: no inline calls in tables 10

3.4 Approach 2.4 Automating premises 2.0 Stepping forward again 10
3.4.1 Writing the premises in a formula 10
3.4.2 Writing the premises in a commented row 11

3.5 Approach 2 conclusion (for now) 12

4 Approach 3 ditaa 12
Disclaimer: this project of mine was left incomplete; I’m uploading what

I have for the moment, and hope to complete this idea at some later time,
when I am using inference rules more.

Also, the solutions posted here have been tested only in plain HTML; I
have not yet utilised the CSS that would be necessary to ensure the rules
look consistent under different styles.

1 Introduction
In teaching and writing, I occasionally need to create inference/deduction
rules.

In the past, when working only in LATEX, I found the bussproofs package
to be the best solution.

These days though, I work in Org, and want a simple method of writing
these that satisfies these requirements.

1. The Org source

(a) is at least as easy to type as plaintext (ideally easier), and
(b) looks like an inference rule; i.e., there is relatively little setup

noise.

2

https://www.math.ucsd.edu/~sbuss/ResearchWeb/bussproofs/index.html

2. It looks correct in at least HTML and PDF export; in particular,

(a) the horizontal rule should be the correct length, and
(b) there should be relatively little vertical space around the horizon-

tal rule.

This gives us this rubric for judging methods:

Criteria category Criteria Pass/Fail Comments
1. Org source a. Ease of typing

b. Appearance
2. Export a. Rule length

b. Rule vspace

This post documents my different attempts to fulfill these requirements.

2 Approach 1 Plaintext
Initially, I just wrote the rules in plaintext src blocks, i.e., #+begin_src
text, #+end_src text.

Using ascii dashes isn’t ideal; the rule should be solid.

p q
–––- dashes

r

Instead, we can use unicode em or en dashes.

p q
em

r

p q
en

r

In Org mode and HTML export, the em dashes work perfectly; they create
a solid rule with the exact length of the the characters entered. But in the
PDF export, they are wider than most characters, making the rule far too
long. This is a particular problem when working with proof trees. Although
this simple tree looks perfect in Org and HTML, it is gibberish in the PDF
export.

3

A B

C D E

F

Possibly the issue with PDF export could be solved by tweaking the font
used in LATEX, but unfortunately restricting my font choice just to get pretty
inference rules is too big of an ask.

In addition to the problems with horizontal length in the PDF, the ver-
tical space around the rule is not ideal in both HTML and PDF. And I can
see no way around this problem; it seems unlikely I will modify the height
of the em dash character.

2.1 Conclusion
Criteria category Criteria Pass/Fail Comments

1. Org source a. Ease of typing By definition, as easy
as plaintext.

b. Appearance As good as it can get
with fixed width and
height.

2. Export a. Rule length Either dashed in
Org/HTML, or too
long in PDF.

b. Rule vspace Regular character
height is too much.

3 Approach 2 Tables
There is an environment in Org which has horizontal rules builtin; the table!

There are several potential ways to use tables to create inference rule
diagrams, and we go from the simple to the complex.

3.1 Approach 2.1 Starting out Basic tables

Let’s start out with a simple table, with the contents centered.

păăăq
r

4

Right off the bat, this has the advantage that the horizontal rule is exactly
the right width in every format, and its vertical spacing is far better than
the plaintext solution.

This table was generated from

#+attr_HTML: :frame void
| <c> |
| păăăq |
|–––-|
| r |

where the :frame void setting for HTML omits the top and bottom rule
that would usually be present for tables. The LATEX export does not have
these rules by default.

We must tweak the HTML slightly further, though; the top row is recog-
nised as a header row, and so it’s wrapped in <th><\th> and in the default
style is thus bolded. We can define a new style for table headers as so:

#+HTML_HEAD: <style type="text/css">th {font-weight:
normal;}</style>↪→

and then repeat our table, with the setting :class noboldheader added.
Additional settings may be necessary depending upon your CSS.

păăăq
r

There are two drawbacks that remain, that will require us to refine this
appraoch; one relatively insignificant, and the other crippling.

1. In both the HTML and PDF export, we must in fact use non-breaking
spaces to separate the premises; otherwise, the export will not retain
the spacing between them.

2. We are completely unable to write a name for the inference
rule next to the horizontal rule!

• Org tables are rather simple, and so a row can only contain a
horizontal rule or text, not both!

3.1.1 Conclusion

Given problem 2 above, it’s not even worth evaluating this approach; it’s
not a valid solution. But it may be that we can extend it to become one.

5

3.2 Approach 2.2 Enabling names Manual horizontal rule

First and foremost, we need to solve the conflict between using the horizontal
rule and the name of the inference rule.

Given the limitations of Org tables, it seems the only solution is to not
use a proper horizontal rule. Instead, we’ll have a cell containing a macro
which creates rules in HTML and LATEX.

#+Macro: bar1 @@latex:\hrulefill@@@@html:<hr>@@

Applying this

#+attr_HTML: :frame void :class noboldheader
<c>	
ăpăăăăqă	
{{{bar1}}}	name
r	

gives us

ăpăăăăqă
name

r

But with this solution we lose the nice vertical spacing around the rule.
This is easy enough to solve in the HTML. We simply set the table’s

cellpadding to 0. At this point, we do have to introduce a non-breaking
space before the name, or it will be directly next to the rule.

ăpăăăăqă
ăname

r

On the LATEX side, we do fortunately have the ability to manipulate
vertical space on the page by calling \vspace{_} with negative amounts.
We augment our macro

#+Macro: bar2 @@latex:\hrulefill\vspace{-0.3em}@@@@html:<hr>@@

and replace {{{bar1}}} with {{{bar2}}} to see that the gap above the rule
is much improved,

ăpăăăăqă
ăname

r

6

but the space above the rule is more concerning. For dealing with that, we
can introduce a macro to wrap the premises for good measure, we also place
the non-breaking spaces in there.

#+Macro: premise1 @@latex:\vspace{-0.7em}@@ă$1ăăă$2ă

and apply it to admire a perfect recreation of the spacing we had with a
simple table.

ăpăăăqă ăname
r

That said, we are still left with some smaller issues.

1. The premise1 macro expects exactly two arguments; we would like to
have a variable number of premises.

2. It would be better to allow a variable amount of space between premises.

3. The non-breaking space we entered before name to account for the lack
of padding in the HTML creates too much space in the PDF.

4. The premises and rules should ideally use math font, not plain font.

We can solve all of these with further macro development.

3.3 Approach 2.3 One step forward, two steps back A macro
for premises

Spoiler: the development here turns out to not be useable in a table cell;
still, it is a useful step forward. It just causes a few steps away from a pretty
solution in Org, which have to be corrected for afterward.

3.3.1 A bit of elisp

We start with a little bit of elisp code which our macro will use.

(let*
;; Find the last non-empty string,

((last-nonempty (position "" premises :test-not 'equal
:from-end t))↪→

;; and take only up to that element of the list.
(premises (seq-take premises (+ last-nonempty 1))))

7

;; Join the resulting list using the spacer, with the
wrapper around↪→

;; each element.
(mapconcat (lambda (p) (format wrapper p)) premises spacer))

This code block has three var arguments:

• premises, which defaults to (), and should be a list of strings. Note
that trailing emptystrings will be deleted the reason for this will be
seen when we get to defining macros.

• wrapper, which defaults to %s, and which should be a format string
this will be applied to each premise, to allow for formatting.

• spacer, which defaults to a string of three non-breaking spaces, this
will be inserted between each premise.

3.3.2 Using the elisp: inline calls

We can make use of this code block, which is named format-premises, by
an inline source code call, with the syntax such as

call_format-premises(wrapper="*%s*",
spacer=" , ",
premises='("hello" "world"))

See the Org manual regarding inline source code calls.
This call wraps each of the words hello and world with asterisks, which

is the Org syntax for bold, and separates them with three dashes. Admire
the results in the export: *hello* , *world*

Not quite right, actually. By default, the results are wrapped in

• verbatim emphasis delimiters, =, and outside of those,

• an invocation of the results macro, which as far as I can tell is simply
used to demarcate the results, so that successive C-c C-c invocations
will overwrite them, rather than prepend them.

This can be seen by hitting C-c C-c on the call, which results in the
following being placed right after it.

{{{results(=*hello* , *world*=)}}}

8

https://orgmode.org/manual/Evaluating-Code-Blocks.html

We definitely don’t want the verbatim wrapper, and can do without the
results macro wrapper in the end use-case of this call, users would not
be manually invoking it.

Thankfully, the wrappers can be replaced via the optional <end header
arguments> argument, placed in (square) brackets after the arguments.
These affect the result of the code block an additional optional argument,
<inside header arguments>, would come before the arguments and would
apply to the source block itself; we have no need of this. We could use
:results raw to eliminate both wrappers. That is,

call_format-premises(wrapper="*%s*",
spacer=" , ",
premises='("hello" "world"))[:results

raw]↪→

results in the expected output

hello , *world*

which exports as expected, as seen here: hello , world

3.3.3 Hiding the inline calls: introducing the premise2 macro

Now, this invocation is too intrusive for our purposes. But we can prettify
it into a macro! Note the linebreaks here are only for presentation; they
cannot be present in the actual macro.

#+Macro: premise2
call_format-premises(

wrapper="$1",
spacer="$2",
premises='("$3" "$4" "$5" "$6"

"$7" "$8" "$9" "$10"))
[:results raw]

You’ll notice that we have lost some flexibility in the translation: the macro
allows for 8 premise arguments I say allows for because omitting arguments
does not cause any errors whereas format-premises allows an arbitrary
number. Unfortunately, it seems Org macros don’t have support for an
arbitrary number of arguments. In this case, it seems an acceptable loss; if
you have more than 8 premises or honestly, more than 4 then this inference
rule presentation is probably the wrong tool for you.

In any case, our macro looks promising; if we invoke it

9

{{{premise2(ăăă,/%s/,p,q)}}}

we get nicely formatted output: p/ăăă/q

3.3.4 Where it falls apart: no inline calls in tables

Unfortunately, as promising as this development was, we’ve reached a point
where it falls apart. If we place our macro into the table,

#+attr_HTML: :frame void :cellpadding 0 :class noboldheader
<c>	
{{{premise2(/%s/,ăăă,p,q)}}}	
{{{bar2}}}	@@html:ă@@name
/r/	

we unfortunately notice on export that it just expands to the text of the
call.

call_format-premises(wrapper="%s",spacer="ăăă",premises=’("p" "q" "" "" "" "" "" ""))[:results raw]
name

r

This is a limitation of Org tables! They do not support inline code in their
cells.

So, we find ourselves at a bit of a dead end. But there is a solution, which
can make use of many of the pieces we constructed here; table formulas!

3.4 Approach 2.4 Automating premises 2.0 Stepping for-
ward again

While we cannot place inline code invocations in table cells, there is a way
to compute cell contents by invoking elisp code: table formulas!

At this point, the reader may wonder why I didn’t immediately consider
table formulas; the reason is the appearance in Org criteria. By placing the
premise calculation in a table formula, the table is naturally less shaped like
an inference rule. This means the first few solutions I work through here
are not ideal by my standards. Thankfully, this can be mitigated with some
cleverness; we’ll get there eventually.

3.4.1 Writing the premises in a formula

As a first venture, consider:

10

#+attr_HTML: :frame void :cellpadding 0 :class noboldheader
<c>	
/p/ăăă/q/	@@latex:\vspace{-0.7em}@@
{{{bar2}}}	modus-ponens
/r/	
#+tblfm: @2$1='(org-sbe format-premises (wrapper "\"/%s/\"")

(spacer "\"ăăă\"") (premises "p" "q"))↪→

The function org-sbe (Org-source babel execute) is necessary to invoke
code in a source block within this file. It takes as argument the name of the
code block as a string or as, as we have chosen, a symbol, as well as lists
for the arguments of the code block, in the form (argument-name value
value value) so, allowing for lists of arguments where each value should
be a string. The premise cell can then be auto-filled by invoking the table
formula with C-c C-c. Also, notice we have moved the LATEX code to move
up the horizontal rule to the cell next to the premise, since we are no longer
use a macro. With all that in place, here is the resulting table:

p/ăăă/q modus-ponens
r

3.4.2 Writing the premises in a commented row

We can improve the appearance of solution in Org at least somewhat by
finding a way to place the premises in the table itself, rather than in the
formula.

Thankfully, Org tables account for use cases such as this; they include
comment rows, similar to the alignment tag row. To use them, we must add
a first column which will not be exported which contains a / for comment
rows.

This row can also contain other markers; we actually make use of two of
them immediately. A _ indicates that the contents of the row are names for
the cells below. A ^ is similar, but the names are for the cells above.

We can achieve better appearance in Org by using comment rows for

• the premises,

• the rule name,

• the conclusion, and

• the wrapper and spacer.

11

Then the end user needs only insert a table template, fill in the comment
rows, and evaluate the formulas to get their inference rule.

p q/ăăă/p modus ponens
"q"

We also replaced the bar2 macro with an identical one whose name looks
a bit more like a horizontal rule. For reference, there are 10 dashes in the
name, and they can easily be typed using C-u 10 -.

#+Macro: inf––––––––
@@latex:\hrulefill\vspace{-0.3em}@@@@html:<hr>@@↪→

3.5 Approach 2 conclusion (for now)

For the moment, the above is where I am leaving this project.
Ideally, what should be done next is to separate the tabular construction

from the table itself entirely; the user would write the rule in simple table
format, and either place a macro or invoke some elisp to generate a table
which exports as the desired tabular.

4 Approach 3 ditaa

A final approach would be to generate images of the inference rules using
ditaa, a program to generate images from ASCII diagram.

The benefit is that the generated images have a fixed appearance, re-
gardless of the export filetype; the downside is that ditaa seems to use a
poor choice of font for unicode, and so the resulting diagrams look rather
unprofessional. A colleague noted they looked like they were made in Word;
a true insult .

If I return to this project, I will generate examples.

12

	Introduction
	Approach 1 â•ﬁ Plaintext
	Conclusion

	Approach 2 â•ﬁ Tables
	Approach 2.1 â•ﬁ Starting out â•ﬁ Basic tables
	Conclusion

	Approach 2.2 â•ﬁ Enabling names â•ﬁ Manual horizontal rule
	Approach 2.3 â•ﬁ One step forward, two steps back â•ﬁ A macro for premises
	A bit of elisp
	Using the elisp: inline calls
	Hiding the inline calls: introducing the premise2 macro
	Where it falls apart: no inline calls in tables

	Approach 2.4 â•ﬁ Automating premises 2.0 â•ﬁ Stepping forward again
	Writing the premises in a formula
	Writing the premises in a commented row

	Approach 2 conclusion (for now)

	Approach 3 â•ﬁ ditaa

